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Executive Summary

Leaks of ammonia in the thermal control system of the International Space Station Alpha (ISSA)
must be detected and located before the supply of ammonia becomes critically low. Although the
existence of a leak can be detected by various monitoring systems, determining the location of the leak is
a difficult technical challenge because the vapor plume from the leak is commingled with the gases and
vapors from a variety of vents and offgassing sources that form an atmosphere around ISSA with a
background pressure as large as 10° torr.

Baseline instrument. Initially, NASA selected an ion gauge as the ISSA baseline ammonia leak-
location instrument. An ion gauge is a technology-ready device, and it can be packaged into a hand-held
instrument for use during extra-vehicular activities to locate leaks. Such a gauge actually detects the
pressure (or density) of the gas for which it is calibrated. Therefore, if an ammonia leak is to be located
successfully, the pressure of the ammonia vapor plume must be substantially greater than the background
pressure of the ISSA environment. Analytical models developed in this study showed, however, that the
partial pressure of an ammonia vapor plume, for anticipated leak rates of 0.5 to 1.5 Ibs/day, decreased to
below the background pressure within a distance of only several feet of the leak. Because of the need,
therefore, to be quite close to the leak source to detect it, the success of an ion gauge as an ammonia leak
locator is problematical.

Ammonia-specific instruments. Based on this analysis of ion gauges, coupled with the large
number of gases and vapors in the ISSA environment and the relatively large background pressure of the
environment, it appeared that a successful leak-location gauge requires the measurement or detection of
some property that was specific to ammonia, in order to distinguish the ammonia vapor plume from the
environment.

Instrument trade study. To evaluate the possibility of developing an ammonia-specific gauge, a
survey of the capabilities of a large number of potential instruments or location methods was conducted.
The instrument and methods represented a wide range of physical principles and technology readiness.
Gauges based on five different techniques were then compared to the baseline ion gauge in terms of
selectivity for ammonia, complexity, development cost, size, and other relevant parameters.

(

Q “selective” ion gauge

Q mass spectrometer

Q infrared absorption gauge

Q infrared fluorescence gauge

Qo disclosing paint
The parameters used in this trade study and the weights (importance relative to other parameters)
assigned to them were selected in conjunction with NASA. Scores were awarded to each instrument for
each traded parameter by a review panel who had demonstrated expertise in designing, fabricating, and
using such instruments.

Trade study conclusions. The trade study indicated that a mass spectrometer was clearly the
best choice for an ammonia leak location instrument and that leak-location instruments based on a
“selective” ion gauge and on disclosing paint were also feasible but represented considerably more
development risk.

Although there have been previous attempts to develop a mass spectrometer for similar
applications with only limited success, recent developments in miniaturization and other improvements
indicate that the development of an ammonia leak-location instrument, somewhat similar to available
commercial mass spectrometers, should not now be difficult. Therefore, the recommended instrument
for the location of ammonia leaks for ISSA is a miniature mass spectrometer.



1.0 Introduction

The thermal control system of International Space Station Alpha will use liquid ammonia as the
heat exchange fluid. It is expected that small leaks (of the order perhaps of one pound of ammonia per
day) may develop in the lines transporting the ammonia to the various facilities as well as in the heat
exchange equipment. Such leaks must be detected and located before the supply of ammonia becomes
critically low. For that reason, NASA-JSC has a program underway to evaluate instruments that can
detect and locate ultra-small concentrations of ammonia in a high vacuum environment. To be useful,
the instrument must be portable and small enough that an astronaut can easily handle it during
extravehicular activity. An additional complication in the design of the instrument is that the
environment immediately surrounding ISSA will contain small concentrations of many other gases from
venting of onboard experiments as well as from other kinds of leaks. These other vapors include water,
cabin air, CO,, CO, argon, N,, and ethylene glycol. Altogether, this local environment might have a
pressure of the order of 107 to 10°® torr.

Southwest Research Institute (SWRI) was contracted by NASA-JSC to provide support to NASA-
JSC and its prime contractors in evaluating ammonia-location instruments and to make a preliminary
trade study of the advantages and limitations of potential instruments. The present effort builds upon an
earlier SWRI study to evaluate ammonia leak detection instruments [Jolly and Deffenbaugh, 1989]. The
objectives of the present effort include:

1. Estimate the characteristics of representative ammonia leaks.
Evaluate the baseline instrument in the light of the estimated ammonia leak characteristics.

2

3. Propose alternative instrument concepts.

4. Conduct a trade study of the proposed alternative concepts and recommend promising
instruments.

The baseline leak-location instrument selected by NASA-JSC was an ion gauge. A typical
Bayard-Alpert type of ion gauge is shown schematically in Figure 1.1. The operation of an ion gauge is
summarized as follows:

a the filaments are heated so as to emit electrons

0 the electrons are accelerated through the voltage
difference between the filaments and the grid

o molecules from the gas to be detected, which Collector
enter the gauge as shown in the sketch, collide
with the electrons and become positively
ionized

O the positive ions are attracted to the negatively-
charged collector

a the collector current, which is proportional to
the density (or pressure) of the detected gas, is
monitored to detect the presence of the gas.

An ion gauge, although relatively simple, cannot identify
the species of the gas being detected, merely its density or
pressure. Thus, it can locate an ammonia leak only if the
density or pressure of the ammonia vapor from the leak is
sufficiently greater than the background gas density. This
physical limitations places a geometric limit on how close | Figure 1.1 Operating Principle of An lon
the gauge must be to a leak in order to locate it. Gauge

I~ Filaments




2.0 Space Station External Environment

2.1 External Environment

The environment external to the International Space Station Alpha (ISSA) can be attributed to
many sources including: natural sources, offgassing of external ISSA hardware, venting events, EVA
activities, and leaks of ISSA fluid lines. Ammonia leaking from the Thermal Control System (TCS) will
be one contributor to the external environment, but leak detection will require that ammonia leaks be
distinguished from other contributors.

2.1.1 Natural sources

Natural sources are those parts of the external atmosphere that are not attributed to ISSA hardware
or activities. Table 2.1, taken from the Space Station Program Natural Environment Definition for
Design [SSP 30425 Rev B] lists total pressure trends and ranges as a function of altitude. ISSA altitudes
range from 225 km to 300 km. The molecular composition of the natural atmosphere in this region of
the thermosphere is not specified in SSP 30425; the primary components are N, O,, O, H, and He.
Generally, heavier species like N and O, persist at lower altitudes, and lighter species are found at
higher altitudes. Whenever thermospheric gas is heated, it expands radially outward; thus, the daytime
thermospheric density is greater than the nighttime density. Geomagnetic storms also affect density
profiles. The natural atmosphere at ISSA altitudes can vary from approximately 1.0% to 1.0 torr.
Changes are complex and attributable to changes in altitude, diurnal cycle, and geomagnetic activity.

Table 2.1 Earth Thermal and Pressure Parameters
Ambient Pressure in Pascal, Torr in parenthesis (Note 1):

Minimum Nominal Maximum Altitude (km)

1.8E-6 8.8E-6 4.8E-5 300
(1.4E-8) (6.6E-8) (3.6E-7)

1.7E-7 1.5E-6 1.5E-5 400
(1.3E-9) (1.1E-8) (1.1E-7) .

3.6E-8 3.1E-7 5.7E-6 500
(2.7E-10) {(2.3E-9) (4.3E-8)

1.6E-8 8.3E-8 2.4E-6 600
(1.2E-10) (6.2E-10) (1.8E-8)

4.2E-9 7.5E-9 1.3E-7 1000
(3.2E-11) (5.6E-11) (9.8E-10)

1.0E-11 Geosynchronous
(7.5E-14)

Notes:

1. Orbit average values of low and high pressure were estimated with the MET Model for a 51.6° inclination
orbit, assuming the following input conditions:
Low Pressure Case: (less than 0.2 percentile frequency of occurrence)
F10B = 70, F10 = 70, a, = 0, Ascending node = 150° (orbit intersects solar bulge), Date = July 30,
(primary minimum of semiannual variation).
High Pressure Case: (exceeds 99.99 percentile frequency of occurrence)
FI10B = 243, F10 = 273, a, = 234, Ascending node = 255° (orbit intersects solar bulge), Date = Oct. 28,
(primary maximum of semiannual variation).

Nominal pressure values were taken from U.S. Standard Atmosphere 1976 [Anon., 1976].
Geosynchronous pressure values were taken from [Smith and West, 1982]. To convert from Pascal to
Torr multiply by 0.0075.



2.1.2 Offgassing and venting sources

Offgassing of external ISSA hardware is another contributor to the external environment. The
Space Station External Contamination Control Requirements Document [SSP 30426] sets the
requirement that all materials used in hardware, which will be exposed to space vacuum, shall have a
total mass loss of less than 1.0 percent and a volatile condensable material loss of less than 0.1 percent.
Offgassing rates will be relatively great initially and decrease as materials age. Offgassed species, and
many other external contaminants will have a ram-wake effect. As the space station moves through the
earth's rarefied environment, a ram-wake effect is created, with a density buildup on the forward facing
surfaces, and a density decrease on the aft facing surface. Buildup on surfaces which have exposure to
ram can be as high as 60 times ambient density. It is difficult to quantify the contribution to the external
environment caused by offgassing, but offgassing contamination will be greater initially and will
decrease with time.

Venting is likely to be the largest contributor to the space station external environment. There are
35 vents on ISSA. Each vent has unique characteristics; some vents will release a single species (such as
CO, or water). Some vents will vent payload experiments. There are more than 150 organic species that
are permitted to be released from these vents. Some vents, like the trace contaminant control system
vacuum desorption vent in the Russian module, are entirely unspecified and unregulated. The schedule
of venting events is complex and unpredictable. Some vents are released when pressure reaches a set
point. Some vents are opened on a regular schedule. Some regularly scheduled vent releases cannot
easily be rescheduled because they are directly tied to life support hardware. Amounts of vented
material are generally unspecified, but there is some data that can describe the magnitude of venting. All
metabolic CO, is vented, and a crew of 6 produces 6.0 kg/day of CO,. Periodic water dumps are
scheduled, and each scheduled release vents up to 25 kg of water. Table 2.2 is a listing and description
of each ISSA vent. This list was made by the ECLSS AIT (Carlos Soares).

2.1.3 EVA sources

EVA activities contribute to the ISSA external environment. Each time the airlock is opened,
approximately 2 kg of gas are released to the outside. The spacesuit uses a water sublimator to control
the thermal environment, and approximately 3 kg of water is boiled away during each EVA. The water
that is sublimated is in the immediate proximity of the EVA astronaut.

2.1.4 Ammonia sources

Ammonia leaks are the target that must be distinguished from the background. As described
previously, a 1.5 Ib/day leak is the required leak location capability, and leak location will be done by
EVA inspection. Approximately 80% of an ammonia leak will jet away and not be detectable, leaving a
residual 0.3 Ib/day leak as the target. CO, vents located within 1 meter of ammonia lines will release up
to 6 kg/day. Water dumps of 25 kg/release will occur. The water sublimator on the EVA space suit will
release about 3 kg/EVA, and the release will be in the immediate vicinity of the leak inspection. The
natural background is large (on the same order as an ammonia plume 1 meter from the leak) and variable
(two orders of magnitude variance). Finding an ammonia leak based on total pressure measurement
alone would be extremely difficult because the external environment pressure is large, complex, and

variable.
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3.0 Prediction of Representative Ammonia Leak Characteristics

An analytical predictive model is needed to establish whether it is feasible to locate an ammonia
leak by an ion gauge or other instrument that measures only the pressure or density of the vapor plume
generated by the leaking liquid ammonia. Two general kinds of ammonia leaks are of interest:

0 liquid escaping from a small dlameter hole (0.005 in diameter) into an infinite vacuum space having
a background pressure of 10 to 107 torr; the leak rate is 0.5 to 1.5 Ib/day for up to 25 days;

a liquid escaping through a small diameter hole into a representative tray (1 meter by 1 meter channel
of various lengths); the ammonia eventually escapes through seams or holes into an infinite space
having a background pressure of 10 to 107 torr; the leak rate is 0.5 to 1.5 Ib/day for up to 25 days.

The background vacuum pressure results from the discharge and venting of liquids and gases from ISSA.

3.1 Model of Ammonia Leaking from a Small Hole into Infinite Space
3.1.1 Physical description of vapor plume generation

Several previous experiments have investigated the characteristics of a water jet flowing through a
small orifice into a vacuum [Fuchs and Legge, 1979; Mann and Stoll, 1964; Mikatarian and Anderson,
1965; Steddum, et al, 1970]. The results of these experiments are the basis of the present analytical
model of a liquid ammonia leak. The experimental findings are summarized as follows:

Q A fraction of the liquid jet flow flashes to vapor (evaporates)
— the energy removed from the flow (primarily the latent heat) to vaporize the liquid cools the rest
of the jet to the point that it freezes a short distance downstream.
Q The characteristics of the expanding vapor plume are a strong function of the shape of the orifice
—  when the orifice is “sharp and clean” and there is little gas dissolved in the liquid, the maximum
possible fraction of the liquid flow flashes to vapor
~ otherwise, the jet forms a spray and “bursts” and freezes relatively close to the orifice.
O Pressure measurements taken in the plume of flashing vapor [Fuchs and Legge, 1979] show that
— the vapor expands supersonically in a radial direction ,
—  the measurements are well predicted by computations based on a continuum gas flow regime
~ exact kinetic theory analysis [Knight, 1976] shows that the continuum flow assumption is
reasonable.
A conceptual physical model derived from these experiments is illustrated schematically in Figure 3.1. It
is worth noting that, because of the supersonic flow of the expanding vapor, there is a surface at which
the flow passes through the sonic velocity
[Knight, 1976]; this sonic surface supplies the -
needed reference quantities for analyzing the
pressure and particle density of the expanding
vapor [Shapiro, 1953].
3.1.2 Analytical model 2r,

sonic surface,
radius = r,

E O ammonia ice
i O OO particles

To develop an analytical model from the
physical model, several assumptions are needed;
they are listed below with their justifications:

o The area of the sonic surface is equal to the
surface of the liquid fraction of the jet
— previous computations [Fuchs and
Legge, 1979] show that the sonic surface
radius is approximately the same as the
orifice radius.

I ANANNNNANAN AN AN

Figure 3.1 Vaporization of a Liquid Jet and
Subsequent Supersonic Expansion of the Vapor
Plume into a Vacuum
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Q The length to diameter ratio L/d of the liquid fraction of the jet is approximately 100
— this ratio agrees roughly with the experiments for jets that did not form a spray near the orifice
— other ratios can be investigated parametrically (but changing L/d changes only the area of the
sonic surface, and the plume characteristics are practically independent of this area).

Q For locations distant from the ammonia source (r/r, >> 1), the plume expansion appears to emanate

from a point source
— this is a reasonable geometric approximation.

O The pressure and density at a point in the plume are computed as if the flow were steady
— the leak persists for durations long compared to the transient time required for the supersonic
plume to reach points that are hundreds of feet away from the leak source, hence, except for a

short initial time period, conditions at any specific location do not change with time.

a The vapor plume expands into a perfect vacuum

— over much of the plume volume, the pressure is orders of magnitude larger than the background
pressure, so the partial pressure of the background has a negligible effect on the plume

— at locations distant from the leak source where the plume pressure is comparable to the
background pressure, it is conservative to neglect the background pressure (i.e., the model
overpredicts the ability to locate the plume by pressure measurements).

Q Processes that remove ammonia molecules from the vapor are neglected
— these processes are small effects (e.g., interaction of ammonia ions with the earth’s magnetic

field), so it is conservative to neglect them.

Table 3.1 summarizes the analytical model developed from the conceptual physical model.

3.2.3 Predicted vapor plume pressure and density

The equations shown in Table 3.1 were solved for a range of parameters describing a leak of liquid
ammonia at 60°F into an infinite space. Since thermodynamic data for ammonia ice could not be found,
the thermodynamic parameter K in the vapor generation equation (see Table 3.1) could not be computed

Table 3.1 Summary of Analytical Model for Ammonia Leaking into an Infinite Space

Equation

Comment

Myapor _ hL —hice =K

th hvapor - hice

Vapor generation rate is given in terms of leak rate
and ammonia liquid 4, vapor h,,,, and ice A,
enthalpies (mass and energy conservation)

r.=r,JL/r, L/r,=100

) 12
_ KmL[ 2RT, ]

These relations give the effective radius r, of sonic
surface and vapor pressure P, at the sonic surface.
R = ammonia gas constant; 7, = ammonia liquid
temperature; y = ratio of ammonia specific heats

2nr2 | Y(y +1)
v+l )
12+ (y=)M> 2040 _(r
M Y+1 A\

X 1
P _ (y+1] (y+)M? [t 2yM? - (y=1) |
P, 2 )2+(y-1)M? Y+l

Ideal gas supersonic flow relations that express
pressure P and Mach number M in terms of the
spherical expansion of the plume. Pressure is the
“pitot” total pressure behind a normal shock formed
at the inlet to an ion gauge located a distance r
from the leak source.

Ag P
p=—
17 \ RT,

This is the particle density of vapor (molecules/vol).
A, = Avogadro’s number; 17 = molecular weight of
ammonia vapor.
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exactly. But for water at 60°F, K = 0.14,
so a conservative value of 0.2 was
assumed for ammonia. The pressure and
density are directly proportional to X, so
the results presented below can be easily
scaled to other values.

From the analytical —model
summarized in Table 3.1, the predicted
variation of plume pressure and density
is shown in Figure 3.2, as a function of
distance from the leak source, for three
different leak rates of liquid ammonia.
For distances r > 10r,, the predictions
are not sensitive to the leak orifice size,
so the plots also apply to orifice
diameters somewhat larger or smaller
than the 0.005 inch diameter used in the
computations. Since the density and
pressure are proportional to the leak
rate, results for other values of leak rate
can be scaled off the plots.

The plots demonstrate that the “pitot total pressure” of the plume decreases to the background
pressure of 10 or 107 torr within ten or so feet of the leak source. Hence, it is concluded that the
ammonia plume cannot be distinguished from the background on the basis of pressure or density alone

1.0E-3 — T I 1.0E+13
S N Plume density for leak rates of | > 8
e NI e T
AN R jar
s » NN 15 oiday vy o
. 1.0E DR y Ll 1.0E+12
$ 5 AN 5 g
" 3 \\\ \\ 3
g 2 ~ N 2 g
§, 1.0E-5 N NS 1.0E+11 .8
3 5 NN 5 g
3 || Pressure for leak rates of AN 3
pOETEETTINST .t
10E6|—|  15ivday \\\\ AN N 106410 3
5 \\i\ PN\ 5 w
3 AN NS g
% 1.0E-7 \Q 10609 &
g <5 5
2 2 &
1.0E 1.0E+8
10640 2 3 5 106+ 2 3 5 10E+2 2
Radial Distance from Leak Source, inches

Figure 3.2 Pressure and Density of an Ammonia Plume

Resulting from a Leak into an Infinite Space. K = 0.2

unless the measurements are made within several feet of the source.

Table 3.2 summarizes the important results of Figure 3.2 for cases when the background pressure

is 107 torr and 107 torr.

Table 3.2 Summary of Plume Pressure and Density Predictions’

Leak Rate Pressure = 10° torr Pressure = 107 torr
Ib/day Distance from leak Plume density Distance from leak Plume density
0.5 32in 8.4 x 10" particle/in® 100 in 8.4 x 10" particiefin®
1.0 44in 8.4 x 10" particle/in® 140 in 8.4 x 10'"? particle/in®
1.5 56 in 8.4 x 10" particlefin® 175in 8.4 x 10'? particlefin®

3.3 Model of Ammonia Leaking from a Small Hole into a Tray or Channel

A likely ammonia leak scenario is (i) an ammonia line develops a hole, (ii) liquid ammonia leaks
into the tray or channel holding the lines and flashes into vapor, (iii) the vapor gradually fills up the tray
or channel, and (iv) the vapor escapes through a seam or hole in the tray or channel walls into the
background vacuum environment of ISSA. The physical processes occurring during this kind of leak are
summarized as follows.
0 Since the pressure in the tray or channel is typically the same as the background environment, the

ammonia liquid flashes into vapor just as if the leak occurred into an infinite vacuum space.
0 The flashing vapor expands supersonically until it is confined by the walls of the tray or channel
— the interaction of the vapor plume and the tray or channel is thereafter a complicated pattern of
reflected and transmitted shock waves

14




— the net effect is that the vapor begins to
. . /""\
accumulate and gradually pressurizes supersonic
the tray or channel volume. expansio? - \\
Q If the tray walls have at least one leaking / vapor \
seam or micrometeroid puncture, the T \ \
ammonia vapor begins to escape out of the [ 1t 2 \
tray or channel into the effectively infinite o \'eak area =4
background vacuum space. -0 feak
« OO
Q The escaping flow rate of vapor gradually pressure = P(1)
increases until it is equal to the rate at Hyapor
which vapor flashes from the liquid jet in T
the tray or channel "
— the pressure in the tray or channel is t
‘t‘hen ec!,ual to the pressure required to Figure 3.3 Schematic lllustration of Channel/Tray
choke” the vapor venting out the tray Ammonia Leak Model

or channel (i.e., the velocity of the
venting vapor at the leaking seam or puncture is the sonic velocity).
0 The vapor expands supersonically into an infinite vacuum space (just as if the leaking seam or
puncture in the wall was the source of the leak).

Figure 3.3 illustrates this conceptual physical model schematically.

3.3.1 Analytical model

Because of the similarity of these processes to those occurring when ammonia vents directly to an
infinite vacuum space, the model summarized previously in Table 3.1 can be used, with some
modifications, to predict the plume characteristics for a leak into a tray or channel. It is only necessary
to relate the pressure of the accumulated vapor in the channel volume to the area of the leak in the wall
(which communicates with the exterior volume) such that the pressure buildup causes the vapor flow out
of the tray or channel to be choked. ‘

3.3.2 Choked flow pressure

The sonic flow relations given previously in Table 3.1 can be used to predict the channel volume
pressure that is required to cause vapor flowing out through a leak to be choked. Table 3.3 summarizes
this required pressure buildup, as a function of the seam or puncture area and total flow rate of vapor
flashing in the channel or tray. It should be noted that the total leak areas listed in Table 3.3 can be
composed of one or more individual leaks.

3.3.3 Time to obtain steady state

For a constant leak rate into the channel, the channel pressure buildup can be derived from the

ideal gas law as a function of time :
Table 3.3 Pressure (Torrs) Required to

. Cause Flow Through a Hole to be Choked
KmL RTO
P(t)=|—=—2V Channel

Viay Leak Area Leak Rate, Ib/day
where V,,,, is the total interior volume of the tray or in’ 0.5 1.0 1.5
channel that can be accessed by the flashing vapor. 0.001 9x10"' | 1.9x10° | 2.8x10°
This relationship neglects the small outflow of vapor 0.01 9x102 | 19x10" | 28x 10"
through leaks in the wall during the time the pressure ' . —— =
builds up to the choked flow condition. 0.1 9x10~ | 1.9x10" | 2.8x 10

1.0 9x10* | 1.9x10° | 2.8x10°
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Figure 3.4 shows a plot of the predicted
pressure buildup, for a channel with a total
accessible volume of 30 m3, as a function of
liquid leak rate. From these plots and the data
given in Table 3.3, the time required for the
pressure to buildup to the point that the vapor
flowing out the leak is choked can be obtained.
The required time is always on the order of a day
or less. Since this is substantially less than the
total duration of the leak, the assumption of zero
outflow from the channel during the pressure
buildup period has a negligible effect on the
vapor plume characteristics.

3.3.4 Predicted plume pressure

Since the vapor plume has a sonic surface
(at the hole in the channel or tray wall), the
supersonic expansion of the plume outside the
channe! can be computed from the model
summarized in Table 3.1. Using this model,

//
: ] L— ]
/
g . ¢ L
= 5 (/é>< //
2 : / A Pres%?hf:c/z leak rates of: :
5 // / }ﬁg :gd:
3 1.08-1 /A Cranmet voame =30t (]
5 (
s .{f
2
[
1.0E-2
0.0 0.2 1.0

04 0.6 08
Time After Start of Leak into Channel, days

Figure 3.4 Pressure Buildup ina 1m X 1m x 30m
Channel for Various Leak Rates. X =0.2

Figure 3.5 shows, for example, the distance from the wall at which the pitot total pressure falls to a
background pressure of 10 torr, as a function of vapor leak area and liquid leak rate. These distances
are slightly less than if the liquid vented immediately to the infinite space environment. In addition, the
supersonic expansion of the vapor plume outside the channel or tray is practically independent of the
area of the leak in the channel or tray wall, except in the near vicinity of the leak.

It should be noted that the predictions given in Figure 3.5 assume a single leak in the wall through
which all the vapor flows. If there is more than one hole in the walls, the flow through each leak will be
proportional to the leak area, and the appropriate distance to the location where the pressure in the plume
from a specific leak is equal to 107 torr should be scaled or interpolated from Figure 3.5.

. |

sk raie = 13 /ey |

[teak rate = 1.0 ib/day

Radial Distance from Wall, inches
8

leak rate = 0.5 Itvday

25
0.00

0.40 0.60 0.80

Area of Channel Leak, in®

0.20

Figure 3.5 Distance from a Channel at Which the
Vapor Plume Pitot Total Pressure Drops to a
Background Pressure of 10°® Torr

3.4 Summary

The predictions summarized in this Section
demonstrate that the pressure in a plume of
ammonia vapor falls to the background vacuum
pressure within about three to five feet of the leak
source when the background pressure is 10°¢ torr,
and within about eight to fifteen feet when the
background pressure is 107 torr. These predictions
are valid both for (i) leaks in which liquid ammonia
escapes directly into an infinite vacuum space, and
(ii) leaks in which liquid ammonia first escapes into
a tray or channel and then ammonia vapor vents
through a puncture or seam in the walls of the tray
or channel into an infinite space. In the second case,
the distances at which the plume pressure falls to the
background pressure pertain to the distance from the
hole or puncture in the tray or channel wall.

The analytical models used to make these
predictions are based on (i) physically-justifiable but

simplifying assumptions, and (ii) physical concepts that were developed by examining the results of
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experiments on the vapor plumes generated by small-diameter jets of liquid water escaping into a
vacuum. For these reasons, the analyses are not theoretically “exact.” However, the analytical models
are considered to give reasonable predictions (say, within about £ 25%) of the true plume characteristics.

From the analyses summarized above, the following important conclusion can be drawn:

Q any instrument, such as an ion gauge, that relies on pressure or density measurements alone,
can locate ammonia leaks of 0.5 to 1.5 Ib/day only if the instrument is within three to five feet
of the leak source (for a background pressure of 10° torr) or within eight to fifteen feet of the
leak source (for a background pressure of 107 torr).

4.0 lon Gauge Capabilities Survey

An ion gauge is a pressure device, which is routinely used to measure the total pressure in vacuum
chambers. Several different types of gauges have been built. They are distinguished through the method
used to ionize the charged particles that provide the basis for a pressure determination. Such methods
include the fluorescence gauge, discharge tube, hot and cold ionization gauges, and others.

The most popular ion gauges today are the hot and cold ionization gauges on which we will mainly
concentrate. There are two different types: the cold cathode and the hot cathode ion gauge. The hot
cathode ion gauges can further be classified by conventional triode and Bayard-Alpert ion gauge
approaches. The appropriate type selected depends on several factors, such as the pressure range.

4.1. Hot lonization Gauges

4.1.1 Measurement principle

The measurement principle of a hot cathode ionization gauge relies on gas ionization. Emitted
electrons from the hot cathode collide with gas molecules in the active region of the gauge, ionize some of
them and produce a measured ion current. The ion I current is given by

['=KIp ()

where K is a calibration or sensitivity factor, I is the _ M .
... . — ! .— Cathoce
ionizing electron current, and p is the molar gas ]
density. Therefore, in principle a hot ionization gauge / lon Cotlector
measures a density. If the temperature of the gas is T Anoce
known, the pressure P can be determined from the I
density, and Eq. (1) becomes

P .‘51 R\

I'=KI"—=CI'P (2) R
RT T

where T is the temperature and R the gas constant. It
should be pointed out that the distinction between Egs.
1 and 2 is important when the gauge is calibrated or
specified for a gas at one temperature and used with a
gas of another temperature.

4.1.2 Conventional triode

s [y

A schematic of a triode design is shown in Q
Figure 4.1.

The use of a thoriated iridium filament as a | Figure 4.1 Schematic of a High Pressure Triode
cathode in a conventional triode usually covers the lonization Gauge
pressure range from 10° to 1 mbar. However, [adapted from Wiest (1987)]

Weinmann (1966) designed a gauge which can be operated at pressures between 0.003 and 5.33 mbar.
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The conventional triode is limited in its measurement of low pressures by soft x-rays generated from
electron impact at the grid. When the x-rays strike the large collector, photoelectrons are emitted. The
photoelectrons cannot be distinguished from the ions, giving rise to an apparent pressure-independent ion
current.

The upper pressure limit is derived through the reaction of oxygen at the hot tungsten cathode
(T >2000 K), which dissociates molecular oxygen forming atomic oxygen. Atomic oxygen reacts with the
carbon impurities of the cathode to yield CO and CO;. CO, is continuously generated as a result of carbon
at the surface of the cathode diffusing from the bulk. Oxygen atoms interact with the tungsten cathode and
produce WO, and WO; as surface species which, depending on temperature, interact with each other to
yield W,04 and W30,. The tungsten oxide is thereby deposited in the walls of the gauge head.

Atomic hydrogen reduces the tungsten oxide film, setting free water vapor. However, H,O
dissociates at the hot tungsten cathode to form oxygen and atomic hydrogen initiating a vapor cycle. This
eventually results in a subsequent reduction of the tungsten cathode thickness.

In a laboratory environment, the higher the total pressure, the higher is the partial pressure of oxygen.
This will lead to a quicker decay of the cathode. The service life of tungsten cathodes is 10-20 h at
102 - 107 mbar and about 1000 h at about 10 mbar.

Thoria-coated iridium filaments do not burn out when being exposed for a short time during
operation to a sudden air in-rush.

4.1.3 Bayard-Alpert

In a Bayard-Alpert (BA) .
gauge, the positive accelerator ———n — lon Collecter
grid (anode) is concentrically . - /
arranged as a spiral coil around =
the very thin central ion ,___._L‘i"r—wr_}/ e L
collector. The inverted triode i ".“'__._:_L~\ /'4‘ ,\ ‘\ A {\ “ A ; ‘\ ‘\ “ \n
structure of a BA greatly |. . 5l = r m ‘
reduces the x-ray cross-section | i‘*-———“ { V U V \I \} I ‘ r\! V \' 1 .?
of the collector while retaining ' *] ;’rr__,—rg UL \ A
a high ion collection efficiency. L ﬁl'_ — YT — \
A BA gauge operates “, 7 /
typically from 10 mbar down — // Anode —
to approximately 10"'? mbar and N /
can be extended through the use Cathoge —'
of a modulator down to Figure 4.2 Schematic of a Bayard-Alpert lon Gauge

approximately 10" mbar. The
lower limit is again given by the x-ray limit. A schematic of a BA ion gauge is shown in Figure 4.2.

At high pressures, the collection efficiency is reduced because of the space charge in the vicinity of
the ion collector and the sensitivity is no longer linear with pressure.
4.1.4 Accuracy of hot ion gauges

The calibration factor X or C depends among other things on gas species, electron energies,
electrostatic field distributions within the gauge structure, temperature, charge densities, and the surface
condition of the electrodes. These factors can change with time and conditions of use.

Numerous studies [Tilford, 1983; Redhead, 1969; McCulloh and Tilford, 1981; Poulter and Sutton,
1981] have shown Bayard-Alpert (BA) type gauges to have an associated measurement uncertainty of 30 to
40%. These inaccuracies are inherent in the design of the BA gauge and cannot be consistently

compensated for by any controller.
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Absolute accuracy of measurement is mainly determined by the condition of the gauge head. If the
gauge head is highly contaminated, it can be as much as a factor of 2.

4.1.5 Size

lon

Cailector Electrode

Cathoge
Uy Ui Ua
1, < le !
| Uk g — ;
y I S <%
* y Steeid + - Lo Gna
Emission Power g
Regulator Supoly lectrometer
|

L

Figure 4.3 Schematic Electronics Set-up
for a Hot lon Gauge

Commercially available hot ion
gauges for installation at a  vacuum
chamber have a length of =56- 83 mm
above the mounting flange, but smaller ion
gauges have been constructed [e.g., Wiiest,
1987, with a height of 31 mm].

4.1.6 Power requirements

Controllers for hot ion gauges are
designed such that if the measured pressure
exceeds the allowable upper limit, the
sensor head is turned off in order to prevent
burning the filament or damaging the
sensor head. A possible set-up of controller
components is shown in Figure 4.3.
Typical operating conditions are shown in

Table 4.1 (next page).

Ion gauges usually have a degas feature, which cleans the surfaces from absorbed matter through

intense electron bombardment.

This feature drives the power requirements of the controller box.

Degassing is important in the case when precision and absolute pressure readings are required.

4.2 Cold Cathode
4.2.1 Principle of operation

Some cold cathode ionization vacuum gauges
function according to the principle of the inverted
magnetron [Haefer, 1955]. An independent gas
discharge is maintained in the measurement chamber
through the application of a high voltage. A
magnetic field penetrating the measurement chamber
at the same time forces the electrons along a spiral
path from the cathode to the anode.  This
lengthening of the path followed by the electrons
assures a sufficient amount of ionizing collisions
between the electrons and the gas molecules to
maintain a gas discharge even at low density gas
atmospheres.  When the type of gas in the
atmosphere is known, and the anode voltage and the
magnetic field are constant, the discharge current is a
measure of the prevailing pressure. A schematic of
such a cold cathode ion gauge is shown in
Figure 4.4.
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Figure 4.4 Cut-Away Diagram of a Cold Cathode
lon Gauge and Associated Circuit
(after Hobson and Redhead, 1958).
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The expression for the absolute sensitivity is
r=s5.pr 3)
where I" is the positive ion current collected at the cathode, P is gas pressure, and n is a numerical
exponent.
4.2.2 Advantages and limitations

Cold cathode high vacuum gauges are particularly reliable and robust because they have no
filament to burn out. Cold cathode high vacuum gauges cannot identify a particular mass.

4.4 Photoionized lon Gauge
4.4.1 Principle of operation

Instead of using a hot filament which ionizes all gases according to their ionization cross-section, a
narrow line light source, such as a xenon lamp, is used in a photoionized ion gauge which ionizes only
gases that have an ionization potential lower than the lamp line energy. This way an ion gauge can be
made more selective to the partial pressure of a particular gas.

4.4.2 Size
Through the replacement of a filament with a lamp, the size of the sensor head increases.
4.4.3 Power

It is anticipated that for the same efficiency the power requirement will be somewhat higher for a
photoionized ion gauge than for the standard ion gauge.

4.5 Semiconductor lon Gauge

The heart of a semiconductor ion gauge is a n-type semiconductor pill. If air flows through the
detector, the pill surface adsorbs oxygen. An exchange of charges takes place, increasing the ohmic
resistance of the pill. Since the partial pressure of oxygen in the air remains approximately constant, a
state of equilibrium is obtained. If an easily inflammable gas, such as hydrogen, CO, etc., strikes the pill
surface, positive charges are generated, decreasing the resistance. These processes are reversible.

4.6 Selectivity to Ammonia

As noted above, an ionization gauge is calibrated for a particular gas and will give inaccurate
pressure readings for a different gas. An ion gauge as a pressure or density measurement device does not
allow the discrimination between masses or species. If the species or composition of the gas is required,
a mass resolving instrument is needed, such as a mass spectrometer or a spectrograph.
4.7 Advantages and Disadvantages

Table 4.2 shows a comparison of different ion gauge types.
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5.0 Evaluation of Baseline and Alternative Ammonia Leak Detection Methods

5.1 Instruments Evaluated

The instruments evaluated in this study are listed in Table 5.1. The list was derived from (i) the
previous study [Jolly and Deffenbaugh, 1989], (ii) suggestions by NASA-JSC personnel, and (iii) a
literature review. All the instruments can operate in a hard vacuum and be integrated into a hand-held

device.

Table 5.1 Instruments Evaluated in Trade Study

Instrument Principle of Operation

lon gauge (baseline instrument) | measures density (or pressure) of gas

measures density of gas selectively ionized by cut-off level of optical

“Selective” ion gauge N
excitation

selects gas on the basis of atomic mass and measures density of that

Mass spectrometer : .
gas with an ion gauge

laser light tuned for absorption by ammonia; receiver examines

Infrared absorption gauge > . . .
transmitted light for ammonia absorption bands

laser light tuned to excite ammonia into fluorescence; optical receiver

Infrared fluorescence gauge
detects fluorescence

Disclosing paint paint changes color in the presence of ammonia

5.2 Trade Study of Ammonia Leak Instruments

NASA-JSC suggested twelve criteria to be used in judging the potential leak-locating instruments.
The relative importance of each of the criteria varied from one to three, depending upon how important
each criterion was relative to the others. Furthermore, if any instrument received a score of zero for any
of the criteria, it was deemed to have failed and was not a viable instrument. The bases for the scores are
reviewed below. The review panel was composed of SWRI personnel who had demonstrated expertise in
designing, fabricating, and using one or more of the instruments.

The scores for this trade study are shown in Table 5.2 (next page). As can be seen from the table,
the mass spectrometer instrument received the highest total, primarily because of its sensitivity to
ammonia. The disclosing paint and the selective ion gauge received the second and third highest totals.
The baseline ammonia gauge, which received a score of zero for lack of sensitivity to ammonia, failed.

5.3 Discussion of Trade Study Scores

The criteria for each instrument are discussed separately, to the extent possible, in the following
sections. In some cases, as needed for clarity, the criteria are preceded by a discussion of the instrument.

5.3.1 lon gauge

The measurement principle of a hot cathode ionization gauge relies on gas ionization. Emitted
electrons from the hot cathode collide with gas molecules in the active region of the gauge, ionize some
of them and produce a measured ion current. An ion gauge is a pressure measuring device only. A
complete description is presented in Section 3.0 of this report.

Selectivity. lon gauges are in principle density measurement devices. The density can be
interpreted as total pressure by an appropriate conversion factor. A conventional ion gauge cannot
discriminate between the atomic masses (or species) of the various gas molecules that generate the total
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Table 5.2 Ammonia Leak Locator Trade Study

Rating (0 to 5): 5 = All desirable features Weight (1 to 3): 3 = Most weight
1 = Minimal features 1 = Least weight
0 = Failed criteria (show stopper)
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lon Gauge (Baseline) 013|543 5|4(4]4[5]4]|4]85
Selective lon Gauge 1{3]|4]4]3[4]3]|3[4[5]4] 4179 (Faileq)
Mass Spectrometer 41513415343 |5(5|4]|3}95
Infrared Absorption at1 112112223 |3]2]45
Infrared Fluorescence 31112|5|2|2{2(2|2|3|3]3]60
Disclosing Paint 5|12]14|4]1]5|3|5|4]1]2[5]85

gas density. Since the external pressure environment of the station is governed by the venting activities,
a device that only measures pressure can not discriminate a small leak of the magnitude being considered
for this study. Consequently, a pressure measurement only is a show stopper and a score of 0 was
awarded for this criteria. .

Sensmvuty A typical sensitivity of a hot ion gauge head for N; is 2 mbar™' , although it can be as
much as 10 mbar”' for Bayard-Alpert gauge heads. Total sensmwty depends also on sensitivity of the
electrometer, which measures the ion current (typically 10% to 10™ amp) This sensitivity places the
gauge in the middle range of all the instruments, so the ion gauge was given a score of 3 for sensitivity.

Development cost. lon gauges for vacuum use are available from many vendors. The
development cost is therefore limited to providing space-qualified electronics. A score of 5 was
therefore awarded for development cost.

Sensing geometry. Bayard-Alpert ion gauges can be made to sense to almost 4= steradians (e.g.,
all around). However, since an EVA tool will not be completely open, the sensing geometry is expected
to be limited to about « sr. Nonetheless, this places the ion gauge near the top of this criterion, so a score
of 4 was awarded.

Accuracy. Ion gauges have an inherent uncertainty of 30% to 40%. Absolute accuracy can be in
error by a factor of two. A middle range score of 3 was awarded for this criterion.

Complexity. Compared to most of the other instruments, an ion gauge is rather simple. A score
of 5 was therefore awarded.

Technology readiness. The technology is fully developed for ground- -based vacuum pressure
measurements, and ion gauges are routinely used for industrial process applications. Electronics and
packaging for space flight must be developed. An above-average score of 4 was awarded.
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Power use. A simple, hand-held ion gauge is expected to require no more than about two watts.
An above-average score of 4 was awarded.

Response time. The response time depends on the opening area of the gas inlet (to accumulate a
sufficiently large sample) and the electronic processing of the signal. The total time can vary from
nearly instantaneous to several seconds. This time is close to the shortest of all the instruments, so a
score of 4 was awarded.

Vacuum compatibility. An ion gauge head is fully compatible with space vacuum. Electronics
have been flown in space before as well. Therefore, a maximum score of 5 was awarded.

Temperature compatibility. Operational requirements for the electronics require the electronics
and battery pack to be maintained in the range of about -20°C to 50°C. This range is near the best of the
investigated instruments and includes most of the anticipated space range, so a score of 4 was awarded.

Geometry. The biggest component is the space-qualified battery. Ion gauges can be purchased in
packages of less than 100 x 65 x 65 mm. The electronics package is estimated to be 75 x 50 x 50 mm,
based on conventional components. The total package size is estimated to be among the smaller of the
instruments, and the instrument should be easily transported and manipulated by hand. A score of 4 was

therefore awarded.
5.3.2 Selective ion gauge

For a selective ion gauge, an attempt is made, using a narrow band optical excitation line, to ionize
only entering gas particle of the desired species. Ammonia, for example, has a first ionization potential
of 10 eV. Unfortunately, other gases in the ISSA environment have first ionization potentials close to
10 eV; as one example, nitrogen tetroxide, a common attitude control engine propulsion fluid, has a first
ionization potential of 9.8 eV. For this reason, the panel concluded that the selectivity of a selective ion
gauge, although better than a conventional ion gauge, falls considerably short of what is needed.
Furthermore, at the present, selective ion gauges are laboratory-development items, and thus are not
commercially available.

Criteria. In most respects, the characteristics and therefore the score of a selective ion gauge are
similar to a conventional ion gauge. For the reasons discussed above, the scores of a sglective ion gauge
were reduced slightly, compared to a conventional ion gauge, for the criteria of development cost,
complexity, technology readiness, and power use. The score for the selectivity criterion was increased
slightly, to one, compared to a conventional ion gauge.

5.3.3 Mass spectrometer

A mass spectrometer separates a gas mixture into separate streams by atomic weight. In that way,
it can be made selective to ammonia (and other species that have a similar atomic weight). The
spectrometer is used in conjunction with a conventional ion gauge to detect the selected species.

Selectivity. Depending on the design, a mass spectrometer can be highly selective. A miniature
quadropole design has a resolution of 1 atomic mass unit over a range of 2 to 65 amu. A Mattauch-
Herzog double focusing unit can have a resolution of 0.5 amu at 50 amu. This selectivity is near the
highest of all the investigated instruments, but there is still a small probability of sensing gases other than
ammonia; thus, a score of 4 was awarded.

Sensitivity. A density sensitivity equivalent to 10> molecules/cm’ can be obtained. This is the
highest sensitivity of all the instruments; thus a score of 5 was awarded.

Development cost. A mass spectrometer is a more complicated instrument than the baseline ion
gauge; its development costs are correspondingly higher. A typical neutral mass spectrometer contains
an ionization source, a mass selector, and an ion detector. A middle-range score of 3 was awarded.
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Sensing geometry. Compared to an ion gauge, the angular acceptance of a mass spectrometer is
slightly reduced because of the finite gap width of the mass selector. However, the difference is small
enough that the same score of 4 as for the ion gauge is justified.

Accuracy. The accuracy of mass spectrometer is better than 10%. This is the best of the
investigated instruments, so a score of 5 was awarded.

Complexity. Compared to the baseline ion gauge, a mass spectrometer is a more complex
instrument because of its electron bombardment source and the need to provide both an electric and a
magnetic field as well as a high-voltage detector. The complexity is, however, less than that of several
of the competing instruments, so a middle-range score of 3 was awarded.

Technology readiness. Mass spectrometers have flown on many space missions. For a hand-held
instrument, however, a limited amount of development will be needed to reduce the size of some
components. There are commercially available, hand-held spectrometers on the market. An above-
average score of 4 is justified.

Power use. For a Mattauch-Herzog mass spectrometer, the required power is estimated to be six
to eight watts (based on an instrument design proposed for the Mars lander). The power use of a
miniature quadropole design is slightly higher and estimated to be seven to nine watts. A middle-range
score of 3 was awarded.

Response time. The response of a mass spectrometer is nearly instantaneous. The highest score
of 5 is justified.

Vacuum compatibility. Most of the complexity of commercial units is providing this vacuum.
The spectrometer is compatible with a hard vacuum. The sensor head, in fact, must be used in a vacuum.
A score of 5 was awarded.

Temperature compatibility. The compatibility of the electronics is similar to that discussed for
an ion gauge. Thus, a score of 4 was awarded.

Geometry. A neutral gas mass spectrometer can be packaged in a volume of 180 x 180 x 50 mm,
and the electronics can be packaged in a volume of 190 x 190 x 75 mm. The battery is not included in
these estimates. The overall size is still easily hand-held, but, because of the larger size compared to the
baseline ion gauge, a score of 3 was awarded.

5.3.4 Infrared absorption gauge

The fundamental physical principle of the operation of an infrared absorption gauge is compatible
with ammonia leak location. A schematic of such a gauge is shown in Figure 5.1. Ammonia has a
number of strong absorption bands (due to vibrational states of the ammonia ground-state molecule) in
the infrared wavelength region near 3 um and near 6 um and between 8 to 14 um. The IR source (e.g., a
laser) is used to send a beam through the gaseous environment, which excites any ammonia molecules in
the gas. With the receiver at the same location as the source (as shown in Figure 5.1), various corner
reflectors would be required in an array around the volume that is being investigated to reflect the light
back to the receiver after passing through the gas cloud. The receiver essentially detects whether any of
the light from the source has been absorbed by ammonia molecules. It would have to incorporate an IR-
sensitive photodetector and a Fourier Transfer Infrared Spectrometer (FTIR). To be useful, the column
length of the ammonia cloud and the integration time of the instrument must be sufficiently large to
generate a detectable signal.

Selectivity. The capability of the gauge to select and detect ammonia, while excluding other
gases, is about the same as a mass spectrometer. Thus, a score of 4 was awarded.
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INFRARED ABSORPTION LEAK DETECTION TECHNIQUE

Cloud of Ammonia

T —— IR Source
e e e L LT e S e ——f ]
_______________ ——==p=_1|
IR Source Beam _—
- Telescope/FTIR/
— —— " Sensor Field-of-View Sensor System

-

Figure 5.1 Schematic of a Ammonia Leak Location Gauge Based on Infrared Absorption (not to scale)

Sensitivity. The use of this gauge in an environment having a pressure of the order of 10 torr
depends on the absorption cross-section of an ammonia molecule, the number density of the ammonia
cloud, and the total length of the light path through the cloud, as well as on the sensitivity of the receiver.
The volume and the low number density of typical ammonia clouds that might occur for ISSA make the
sensitivity of the gauge marginal. Thus, a low score of 1 was awarded.

Development cost. A flight-qualified, hand-held, laser/telescope/detection system combined with
a FTIR is at present merely a concept. Hence, a low rating of | was awarded for this criterion.

Sensing geometry. Sensing can only be accomplished over paths between fixed retroreflectors
distributed over ISSA and the transmitter/receiver instrument. — Many, perhaps hundreds of

retroreflectors, will be required. Hence, a low score of 1 was awarded.

Accuracy. The accuracy of the gauge depends on the signal-to-noise ratio- of the detected
absorptions. Because of the low signal-to-noise ratio, very long integration times will be required to
achieve a minimum level of accuracy. For that reason, and compared to the sensitivity of the other
instruments, a moderately low score of 2 was awarded.

Complexity. The gauge, which requires some kind of laser or IR-emitting device, a receiver and
telescope, a receiver, and a FTIR is the most complex of all the instruments surveyed. A score of 1 is
therefore justified.

Technology readiness. Many of the instrument components are available (although perhaps not
in flight-qualified form), but an integrated package for space applications is not. A moderately low score
of 2 was awarded.

Power use. Power is required to operate the focal plane and its associated electronics, the laser or
IR source, and the electronics (which are considerably more sophisticated than for the baseline ion
gauge). Quantitative power estimates were not made, but the total will be significantly greater than for
the baseline gauge. Hence, a score of 2 was awarded.

Response time. As discussed previously, the response time of this gauge is inherently associated
with the low signal-to-noise ratio. It is estimated, for typical ammonia leak cloud densities, that the
response time will be of the order of minutes or even hours.

Vacuum compatibility. With some development and packaging, the gauge can be made
compatible with the vacuum of space. A middle-range score of 3 was awarded.
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Temperature compatibility. The more sophisticated electronics of the gauge, compared to the
baseline ion gauge, makes the gauge somewhat more sensitive to temperature extremes. A score of 3 is
justified.

Geometry. The overall size of the gauge is estimated to be the largest of all the instruments
investigated, and may perhaps exceed the “hand held” criterion. A moderately low score of 2 is justified.

5.3.5 Infrared fluorescence gauge

The fundamental physical principle of the operation of an infrared fluorescence gauge is also
compatible with ammonia leak location. A schematic of such a gauge is shown in Figure 5.2. As stated
earlier, ammonia has a number of strong absorption bands (due to vibrational states of the ammonia
ground-state molecule) in the infrared wavelength region near 3 um and near 6 pm and between 8 to
14 um. A laser tuned to one of these wavelengths would stimulate ammonia molecules to a higher
vibrational state; when the molecules relax back to the ground state, photons having a longer infrared
wavelength region would be emitted (i.e., the molecules would fluoresce). For example, if an ammonia
molecule is excited by 2.9 um photons, the de-excitation would occur at 6.1 um. An optical receiver
capable of detecting the resulting fluorescence could be used to locate ammonia leaks. A single, hand-
held instrument could raster the laser beam to sweep out a three dimensional volume around the
instrument. The complete instrument would require a telescope and an infrared-sensitive detector
(having a narrow band filter at the expected fluorescence wavelength). As an additional benefit, the
ammonia cloud could also be imaged as well as detected and located.

The infrared fluorescence gauge shares many of the attributes of the infrared absorption gauge.
However, it is judged to be somewhat more selective in excluding other species, somewhat less complex,
and, because of its three-dimensional sensing capability, to have the highest of all sensing geometry
features. It is also more probable that a hand held gauge could be developed. The scores, thus, are
somewhat higher for all these criteria than for the infrared absorption instrument.

5.3.6 Disclosing paint gauge

A unique ammonia sensitive paint has been developed for NASA-JSC [Graef, Mallow, Caceres,
1993]. This “litmus paper type” coating changes color when exposed to trace amounts of ammonia.

Selectivity. Test results for the paint show that it will change colors only to ammonia and is
unaffected by the presence of other contaminant gases, thus a score of 5 was awarded.

LASER-INDUCED FLUORESCENCE LEAK DETECTION TECHNIQUE

Cloud of Ammonia

Laser Source

Telescope/Sensor
System

Figure 5.2 Schematic of a Laser-Induced Fluorescence Ammonia Leak Location Gauge (not to scale)
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Sensitivity. While there is a range of concentration that results in a degree of color change, this
range is relatively small. A color change was observed at concentrations as low as 1 part per million.
This is not as good as the mass spectrometer and only slightly lower than the ion gauge, so it received a
score of 2.

Development cost. Integration cost of this paint into a hand-held device is relatively
straightforward. The only development cost is the final formulation of the paint composition to balance
all of competing design requirements. It, therefore, received a score of 4.

Sensing geometry. A simple hand-held enclosure is required to “capture” sufficient number of
ammonia molecules. This geometry is small and relatively simple, thus, a score of 4 was awarded.

Accuracy. This is basically a go or no-go type of indication. It, therefore, cannot quantify
concentration. A score of 1 was, therefore, awarded.

Complexity. The disclosing paint does not require any electronics and is, therefore, the least
complex of any of the gauges evaluated. It was awarded a score of 5.

Technology readiness. No prior flight experience exists, but a breadboard demonstration has
been produced and tested. Its technology readiness is not as good as the baseline ion gauge, but better
than the two infrared devices. A score of 3 was awarded.

Power use. No power is required, thus, a score of 5 was awarded.

Response time. The response time is good; however, not as good as the mass spectrometer. It
was awarded a score of 4.

Vacuum compatibility. This is the one major concern for the disclosing paint. The initial
formulation of the paint was exposed to various levels of vacuum. At 10°® torr and 150°F, the paint lost
an order of magnitude sensitivity over the course of a 6-week period. Since the original purpose of the
paint was a twenty year indication for the external utility trays of Space Station Freedom, it was deemed
to have an unacceptable life. However, for a hand-held device that is to be used for a one-day-at-a-time
EVA, this is not as detrimental. A series of coupons could be used, thus, it was awarded a score of 1.

Temperature compatibility. Since this is a chemical sensitivity, its temperature compatibility
may be limited. A thermal cycle test was performed with no sensitivity loss over a two-week period. A
score of 2 was awarded due to the limited data available.

Geometry. There are no real geometry limits. This “device” could be as simple as attaching
small circular samples to the crew member suite or integration into a small covered sniffer the size of the
crew member’s hand. It was awarded a score of 5.

6.0 Conclusions and Recommendations

The basis of this study is that the ammonia inventory management system senses loss of ammonia.
A crew member will, then, perform an EVA with a hand-held sniffer to locate the ammonia leak external
to the station. In the absence of any station vents, a pressure measurement device would be sufficient to
locate this leak if the crew member was within several feet of the leak. An ion gauge is an ideal and
simple device for this type of pressure detector. It was selected by the prime contractors as the baseline
approach. However, based on the venting and offgassing data provided by NASA-JSC, the pressure
environment external to the station is such that a pressure or density device would have to be within
inches of the leak to detect it, and also sufficiently far enough away from the plumes of vents and
offgassing sources. This does not appear to be feasible, so an ion gauge is not, therefore, a practical
solution.

The other types of techniques were traded off against the ion gauge to identify better alternatives.
From a pure technology point of view, a hand-held mass spectrometer was found to be clearly superior to
all other approaches, primarily because it can accurately sense the composition of the different gases and
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will require relatively little development. The detection of composition not pressure would be more
successful in the predicted environment external to the station. Prior attempts at developing a mass
spectrometer for this type of application have been problematic. Mass spectrometers have, however,
been developed as science instruments for a number of applications. The limited task of locating an
ammonia leak should not be difficult for a device similar to commercial units now on the market.

Two other approaches ranked below the mass spectrometer do appear feasible. One is a unique
disclosing paint that functions like a “litmus paper” for trace amounts of ammonia, and the other is a
selective ion gauge that only ionizes gases with ionization potential below a selective threshold. Neither
of these devices has a commercial version, and therefore, are more risky.

The recommended leak detector for this application is the hand-held mass spectrometer.
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